首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   8篇
  国内免费   9篇
安全科学   13篇
废物处理   20篇
环保管理   39篇
综合类   29篇
基础理论   65篇
污染及防治   82篇
评价与监测   20篇
社会与环境   18篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   13篇
  2017年   13篇
  2016年   21篇
  2015年   7篇
  2014年   15篇
  2013年   20篇
  2012年   17篇
  2011年   23篇
  2010年   7篇
  2009年   11篇
  2008年   18篇
  2007年   18篇
  2006年   18篇
  2005年   8篇
  2004年   9篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1979年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有287条查询结果,搜索用时 265 毫秒
41.
Mechanical energy has been used so far for running chemical reactions and for preparing new materials in absence of solvents. Very recently, the technology has been applied to solve environmental problems. In this paper, we describe the application of high-energy milling (HEM) for the remediation of soils contaminated by chlorinated organic compounds such as polychlorobiphenyls (PCBs) and agrochemicals like atrazine. NaBH4 and LiAlH4 have been successfully used for the total dehydrohalogenation of both classes of compounds, leaving a residue lower than 2 ppmw of the starting compound in the treated soil. LiAlH4 was found to be more active than NaBH4.  相似文献   
42.
A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper.  相似文献   
43.
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.  相似文献   
44.
Electrochemical peroxidation (ECP), an emerging remediation technology, with direct electric current applied to steel electrode and small addition of H2O2, was used to remove As(III) from contaminated aqueous solutions. Bench scale experiments were conducted to evaluate the sorption and distribution of arsenic between the soluble and solid state hydrous ferric oxides (HFO) formed as part of the ECP process. ECP was effective in removing arsenic from the aqueous solution, with >98% of the applied As(III) adsorbed on HFO. Removal was complete within 3 min of ECP treatment and apparently independent of the initial pH of the water (3.5-9.5). In the absence of H2O2 more As(III) was adsorbed by solid state iron at pH 9.5 than at 3.5 (2600 vs. 1750 microg l(-1)). Thus H2O2 was crucial to oxidize As(III) to As(V) which is more strongly retained by HFO. Removal of As was not significantly affected by the concentration of H2O2 or by current processing time. The optimal operating conditions were pH < 6.5, H2O2 concentration of 10 mg l(-1) and current process time not exceeding 3 min. X-ray diffraction (XRD), diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy and transmission electron microscopy (TEM) were applied to study the HFO deposits. The XRD data indicated the prevalence of poorly ordered Fe minerals in the suspended ECP solids with a dominance of 5 line ferrihydrite in the absence of H2O2. At pH 3.5 and with 100 mg H2O2 l(-1), akaganeite was formed, whereas an incipient hematitic phase, reflection at 0.39 nm, occurred at pH 6.5. DRIFT data indicate that both As(III) and As(V) were specifically adsorbed onto HFO at acid and neutral pH. TEM observations indicated the presence of spherical shape ferrihydrite and provided evidence for possible formation of subrounded hematite and acicular shape goethite.  相似文献   
45.
46.
47.
A three‐dimensional stochastic groundwater flow and contaminant transport model has been developed to optimize groundwater containment at an industrial site in Italy and to define likely future contaminant distribution under different confinement or remediation scenarios. The transport model was first calibrated using a deterministic approach to simulate the hydrochemical conditions prior to the optimization of groundwater extraction, then a probabilistic simulation was conducted to predict future contaminant concentrations. The stochastic approach allowed introducing an estimate of the uncertainty of the hydrogeological and chemical parameters into the model, simulating the probability density function of the contaminant concentrations after the application of the optimized barrier wells pumping rates. This allowed the calculation of the time required for the concentrations of each modeled parameter to decrease to under the regulatory limit at the compliance point, and associating the related uncertainty into the model. Quantifying the model prediction uncertainty facilitated a better understanding of the site environmental conditions, providing the site owners additional information for managing the site and allocating related economic resources. ©2016 Wiley Periodicals, Inc.  相似文献   
48.
49.
50.
The geochemistry of floodplain sediments is fundamental to monitor environmental changes and to quantify their contribution to natural and anthropic processes. A floodplain sediment composition is a vector of positive elements which sum to a fixed constant. The analysis of high-dimensional compositions requires methods that produce results involving only a small portion of the original variables. On the other hand, the analysis must take into account the additional constraints specific to compositions. With the purpose of studying these problems, a new procedure for sparse PCA is proposed on European floodplain sediment samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号